Abstract

A metasurface (MS) used to convert the linearly polarized (LP) signal from a source antenna into a circularly polarized (CP) signal is proposed and studied. The MS consists of 16 unit cells arranged in a 4 × 4 layout. Each unit cell is a rectangular loop with a diagonal microstrip. By placing close to a source antenna, the MS converts the LP signal generated from the source antenna into a CP signal. Two source antennas (patch and slot antennas) are used for studies. The source antenna together with the MS is here called a MS antenna. A total of four low-profile MS antennas operating at the frequency of about 2.45 GHz are designed using computer simulation. For verification of simulation results, the MS antennas are fabricated and measured. Simulated and measured results show good agreements. Results show that the MS antennas have substantially better performances, in terms of gain, return-loss bandwidth (RLBW), axial-ratio bandwidth (ARBW) and radiation pattern, than the source antennas. Moreover, the ARBW of the MS antennas is mainly determined by the MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call