Abstract

In our previous work we demonstrated that by eliminating regulation and rectification modules from the energy harvesting pathway, the minimum activation power of a piezoelectricity-driven hot-electron injector (p-HEI) can be reduced down to a few nanowatts. As a result the p-HEI device could be used for self-powered, in-vivo recording of biomechanical strain variations. However, for large magnitudes of input strain energy, the response of the modified p-HEI sensor was found to be quasi-linear with respect to the number of loading cycles, which made the calibration of the sensor difficult across a wide variety of biomedical applications. In this paper we propose a compensation circuit that is able to linearize the response of the p-HEI injector over a wide range of input power while maintaining a low activation threshold. The compensation circuit uses a combination of a storage capacitor and a non-linear resistor which produces a compressive input-output response required for linearization. Using prototypes fabricated in a 0.5-μm bulk CMOS process we validate the functionality of the injector and demonstrate that it can achieve a linear injection response for input power ranging from 5 nW to 1.5 μW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.