Abstract

We show in this letter that the perturbed Burgers equation $u_t = 2uu_x + u_{xx} + \epsilon ( 3 \alpha_1 u^2 u_x + 3\alpha_2 uu_{xx} + 3\alpha_3 u_x^2 + \alpha_4 u_{xxx} )$ is equivalent, through a near-identity transformation and up to order \epsilon, to a linearizable equation if the condition $3\alpha_1 - 3\alpha_3 - 3/2 \alpha_2 + 3/2 \alpha_4 = 0$ is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.