Abstract

Performance assessments of quantitative determinations of proton density fat fraction (PDFF) have largely focused on the range between 0 and 50%. We evaluate PDFF in a two-site phantom study across the full 0-100% PDFF range. We used commercially available 3D chemical-shift-encoded water-fat MRI sequences from three MRI system vendors at 1.5T and 3T and conducted the study across two sites. A spherical phantom housing 18 vials spanning the full 0-100% PDFF range was used. Data at each site were acquired using default parameters to determine same-day and different-day intra-scanner repeatability, and inter-system and inter-site reproducibility, in addition to linear regression between reference and measured PDFF values. Across all systems, results demonstrated strong linearity and minimal bias. For 1.5T systems, a pooled slope of 0.99 with a 95% confidence interval (CI) of 0.981-0.997 and a pooled intercept of 0.61% PDFF with a 95% CI of 0.17-1.04 were obtained. Results for pooled 3T data included a slope of 1.00 (95% CI 0.995-1.005) and an intercept of 0.69% PDFF (95% CI 0.39-0.97). Inter-site and inter-system reproducibility coefficients ranged from 2.9 to 6.2 (in units of PDFF), while intra-scanner same-day and different-day repeatability ranged from 0.6 to 7.8. PDFF across the 0-100% range can be reliably estimated using current commercial offerings at 1.5T and 3T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call