Abstract
A linear stochastic differential equation in an arbitrary separable Banach space is considered. To solve this equation, the corresponding linear stochastic differential equation for generalized random processes is constructed and its solution is produced as a generalized Itô process. The conditions under which the received generalized random process is the Itô process in a Banach space are found, and thus the solution of the considered linear stochastic differential equation is obtained. The heart of this approach is the conversion of the main equation in a Banach space to the equation for generalized random processes, to find the generalized solution, and then to learn the conditions under which the obtained generalized random process is the random process with values in a Banach space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.