Abstract
Onset of double-diffusive buoyancy-driven flow resulted from vertical temperature and concentration gradients in a horizontal layer of a saturated and homogenous porous medium is investigated using amplification factor theory. After injection of CO2 into a deep saline aquifer, the density of the brine saturated with CO2 increases slightly. This increase in density induces natural convection. The effect of geothermal gradient is also considered in this work as a second incentive for convection and the double-diffusion convection was studied. Linear stability analysis is used to predict the inception of instabilities and initial wavelength of the convective instabilities. The analysis presented is applied to acid gas injection (as an analogue for CO2 storage) into saline aquifers in the Alberta basin. It is found that the geothermal gradient does not have significant effect on the onset of convection for these aquifers. It is shown that the geothermal effects on the onset of natural convection are negligible as compared to the solutal effects induced by dissolution and diffusion of CO2 in deep saline aquifers. Therefore, the linear stability analysis and the long-term numerical simulation of CO2 sequestration into such saline aquifers may be assumed to be isothermal in terms of natural convection occurrence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.