Abstract

We present a linear scaling formulation for the solution of the all-electron Coulomb problem in crystalline solids. The resulting method is systematically improvable and well suited to large-scale quantum mechanical calculations in which the Coulomb potential and energy of a continuous electronic density and singular nuclear density are required. Linear scaling is achieved by introducing smooth, strictly local neutralizing densities to render nuclear interactions strictly local, and solving the remaining neutral Poisson problem for the electrons in real space. While the formulation includes singular nuclear potentials without smearing approximations, the required Poisson solution is in Sobolev space $H^1$, as required for convergence in the energy norm. We employ enriched finite elements, with enrichments from isolated atom solutions, for an efficient solution of the resulting Poisson problem in the interacting solid. We demonstrate the accuracy and convergence of the approach by direct comparison to standard Ewald sums for a lattice of point charges, and demonstrate the accuracy in all-electron quantum mechanical calculations with an application to crystalline diamond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.