Abstract
The relationship between aboveground biomass and plant diversity has been extensively examined to understand the role of biodiversity in ecosystem functions and services. Degraded grassland restoration projects can enhance carbon sequestration. However, the relationship between biomass and diversity remains one of the most actively debated topics regarding grassland ecosystems in degraded grassland restoration projects. We speculated that establishing the linear relationships between aboveground biomass and plant species diversity could contribute to enhancing the efficacy of degraded grassland restoration projects. This study sought to determine whether these relationships were linear during the initial stages of the restoration projects of degraded grasslands in Xing'an League, China. The investigations were based on an examination of seventy-six 1 × 1 m2 plots distributed among 15 areas in which the degraded grassland was at the initial stages of restoration. To quantify the species diversity of the degraded grassland communities, we used the species richness, Shannon-Wiener, inverse Simpson's reciprocal, and Pielou's evenness indices. Our analyses revealed that aboveground biomass had clear positive linear relationships with species richness during the initial stages of degraded grassland restoration. However, there were less pronounced associations with species diversity as assessed using the Shannon and inverse Simpson indices, based on regression models. Furthermore, weed biomass was found to have significant negative effects on species richness and Pielou's evenness. The weak linear relationship between aboveground biomass and species richness could be ascribed to an increase in weed biomass. We concluded that aboveground biomass and plant species diversity could be enhanced during the initial stages of degraded grassland restoration projects and suggest that the extent of weed biomass could serve as a key indicator of the efficacy of restoration from the perspective of plant species diversity and aboveground biomass in carbon sequestration projects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have