Abstract

Coronavirus disease 2019 is a fatal viral disease presently sweeping the globe. COVID-19 is a novel coronavirus that produces an infectious illness. Thus, COVID-19 detection in the general population may be helpful. The involvement of machine learning in combating COVID-19 had rapidly increased because of its efficiency to scale up, faster processing capacity, and more dependable than humans in some healthcare activities. This paper will focus on two models which are Linear Regression (LR) model and Holt’s Winter model. The COVID-19 dataset was taken from the Ministry of Health for Malaysia’s website. Daily confirmed cases were recorded from 24 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sup> of January 2020 to 31 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">st</sup> July 2021 and stored in Microsoft Excel. Waikato Environment for Knowledge Analysis (WEKA) software was utilized to perform the prediction of daily cases in the next 14-days and the quality of forecasting models is evaluated by two performance metrics, Mean Absolute Deviation (MAD) and Mean Absolute Percentage Error (MAPE). The best model is selected by the lowest value of performance metrics. The comparison shows that the forecasting result of Holt’s Winter is more accurate than the LR model. The developed prediction model can help public health officials make better decisions and manage resources to decrease COVID-19 pandemic morbidity and mortality. Therefore, preparation and control procedures can be established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.