Abstract
Abstract Our main purpose is to describe the recurrence relation associated to the sum of diagonal elements laying along a finite ray crossing Pascal’s triangle. We precise the generating function of the sequence of described sums. We also answer a question of Horadam posed in his paper [Chebyshev and Pell connections, Fibonacci Quart. 43 (2005), 108–121]. Further, using Morgan-Voyce sequence, we establish the nice identity $F_{n + 1} - iF_n = i^n \sum\limits_{k = 0}^n {(_{2k}^{n + k} )( - 2 - i)^k } $ of Fibonacci numbers, where i is the imaginary unit. Finally, connections to continued fractions, bivariate polynomials and finite differences are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.