Abstract
Abstract The aim of this paper is to give new results about factorizations of the Fibonacci numbers F n and the Lucas numbers L n. These numbers are defined by the second order recurrence relation a n+2 = a n+1+a n with the initial terms F 0 = 0, F 1 = 1 and L 0 = 2, L 1 = 1, respectively. Proofs of theorems are done with the help of connections between determinants of tridiagonal matrices and the Fibonacci and the Lucas numbers using the Chebyshev polynomials. This method extends the approach used in [CAHILL, N. D.—D’ERRICO, J. R.—SPENCE, J. P.: Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart. 41 (2003), 13–19], and CAHILL, N. D.—NARAYAN, D. A.: Fibonacci and Lucas numbers as tridiagonal matrix determinants, Fibonacci Quart. 42 (2004), 216–221].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.