Abstract
This article introduces the problem of linear quadratic tracking (LQT) where the objective is to design a closed-loop control scheme such that the output signal of the system optimally tracks a given reference signal and rejects a given disturbance. Different performance indices that have been used to address the tracking problem are discussed and an appropriate new form is introduced. It is shown that a solution to the proposed optimality index exists under very mild conditions of stabilisability and detectability of the plant state-space equations. The solution is formulated based on converting the LQT problem to a standard linear quadratic regulation problem. The method is applied to two examples, a first-order plant and a third-order plant, and their simulation results are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.