Abstract
In this paper, we study a controlled linear-quadratic-Gaussian large population system combining three types of interactive agents mixed, which are respectively, major leader, minor leaders, and minor followers. In reality, they may represent three typical types of participants involved in market price formation: major supplier, minor suppliers and minor producers. The Stackelberg–Nash–Cournot (SNC) approximate equilibrium is derived from the combination of a major–minor mean-field game (MFG) and a leader–follower Stackelberg game. Although all agents are of forward states in that only initial conditions are specified in their dynamics, our SNC analysis provides an MFG framework that is naturally in a forward–backward state in that both initial and terminal conditions are specified. This result differs from those reported in the literature on standard MFG frameworks, mainly as a result of the adoption of a Stackelberg structure. Through variational analysis, the consistency condition system can be represented by some fully-coupled forward–backward-stochastic-differential-equations with a high-dimensional block structure in an open-loop case. To sufficiently address the related solvability, we also derive the feedback form of the SNC approximate. equilibrium strategy via some coupled Riccati equations. Our study includes various mean-field game models as its special cases.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have