Abstract

A major issue of locally repairable codes is their robustness. If a local repair group is not able to perform the repair process, this will result in increasing the repair cost. Therefore, it is critical for a locally repairable code to have multiple repair groups. In this paper we consider robust locally repairable coding schemes which guarantee that there exist multiple distinct (not necessarily disjoint) alternative local repair groups for any single failure such that the failed node can still be repaired locally even if some of the repair groups are not available. We use linear programming techniques to establish upper bounds on the size of these codes. We also provide two examples of robust locally repairable codes that are optimal regarding our linear programming bound. Furthermore, we address the update efficiency problem of the distributed data storage networks. Any modification on the stored data will result in updating the content of the storage nodes. Therefore, it is essential to minimise the number of nodes which need to be updated by any change in the stored data. We characterise the update-efficient storage code properties and establish the necessary conditions of existence update-efficient locally repairable storage codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.