Abstract

AbstractNaturally occurring tartaric acid was used as raw material for the synthesis of novel linear polyurethanes (PURs) bearing two carboxylate side‐groups in the repeating unit. Aliphatic and aromatic PURs were obtained by reaction in solution of alkyl and benzyl tartrates with hexamethylene diisocyanate and 4,4′‐methylene‐bis(phenyl isocyanate), respectively. All the novel PURs were thermally stable and optically active. The aliphatic carboxylate‐containing PURs had Mw in the 40–70 kDa range, with PD between 2.1 and 2.5; all were semicrystalline polymers with melting temperatures between 100 and 150 °C and Tg in the 50–80 °C range. The aromatic PURs were amorphous materials with molecular weights between 18 kDa and 25 kDa and Tg above 130 °C. Hydrogenolysis of the PUR made from hexamethylene diisocyanate and benzyl tartrate yielded PURs containing up to 40% of free carboxylic side‐groups. The tartrate‐derived PURs displayed enhanced sensitivity to hydrolysis compared with their unsubstituted 2,6‐PUR homologs. The PURs bearing free carboxylic groups were unique in being degraded by water upon incubation under physiological conditions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2391–2407, 2009

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.