Abstract

We study linear panel regression models in which the unobserved error term is an unknown smooth function of two-way unobserved fixed effects. In standard additive or interactive fixed effect models the individual specific and time specific effects are assumed to enter with a known functional form (additive or multiplicative). In this paper, we allow for this functional form to be more general and unknown. We discuss two different estimation approaches that allow consistent estimation of the regression parameters in this setting as the number of individuals and the number of time periods grow to infinity. The first approach uses the interactive fixed effect estimator in Bai (2009), which is still applicable here, as long as the number of factors in the estimation grows asymptotically. The second approach first discretizes the two-way unobserved heterogeneity (similar to what Bonhomme et al., 2021 are doing for one-way heterogeneity) and then estimates a simple linear fixed effect model with additive two-way grouped fixed effects. For both estimation methods we obtain asymptotic convergence results, perform Monte Carlo simulations, and employ the estimators in an empirical application to UK house price data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.