Abstract

We have developed a very schematic static model to calculate the most probable amount of linear momentum transfer,\(\tilde \rho\), that a projectile can transmit to a fusing system in heavy ion collisions at bombarding energies between ∼10 and 20 MeV/u. This approach estimates the conditions necessary in phase space for nucleons to be emitted by the mean field of one of the two nuclei. Due to its simplicity this model gives a qualitative description of the data and it is only expected to provide some general numerical trends of\(\tilde \rho\) as a function of the macroscopic parameters of the reaction. It is found that\(\tilde \rho\) depends not only on the bombarding energy per nucleon but also on the masses of the projectiles and targets. Finally, the question of the amount of maximum energy that a nucleus can sustain under the condition of global statistical equilibrium is investigated. It is found that the mass asymmetry of the system is an all important parameter in determining the limits of fusion related to this maximum excitation energy content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.