Abstract

We report magnetotransport measurements in a HgTe quantum well with an inverted band structure, which is expected to be a two-dimensional (2D) topological insulator. A small magnetic field perpendicular the 2D layer breaks the time reversal symmetry and thereby, suppresses the edge state transport. A linear magnetoresistance is observed in low magnetic fields, when the chemical potential moves through the the bulk gap. That magnetoresistance is well described by numerical calculations of the edge states magnetotransport in the presence of nonmagnetic disorder. With magnetic field increasing the resistance, measured both in the local and nonlocal configurations first sharply decreases and then increases again in disagreement with the existing theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.