Abstract

We consider the problem of estimating regression models of two-dimensional random fields. Asymptotic properties of the least squares estimator of the linear regression coefficients are studied for the case where the disturbance is a homogeneous random field with an absolutely continuous spectral distribution and a positive and piecewise continuous spectral density. We obtain necessary and sufficient conditions on the regression sequences such that a linear estimator of the regression coefficients is asymptotically unbiased and mean square consistent. For such regression sequences the asymptotic covariance matrix of the linear least squares estimator of the regression coefficients is derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.