Abstract

Global linear gyrokinetic simulations using realistic DIII-D tokamak geometry and plasma profiles find co-existence of unstable reversed shear Alfvén eigenmodes (RSAE) with low toroidal mode number n and electromagnetic ion temperature gradient (ITG) instabilities with higher toroidal mode number n. For intermediate n = [10, 12], RSAE and ITG co-exist and overlap weakly in the radial domain with similar growth rates but different real frequencies. Both RSAE and ITG growth rates decrease less than 5% when compressible magnetic perturbations are neglected in the simulations. The ITG growth rates increase less than 7% when fast ions are not included in the simulations. Finally, the effects of trapped electrons on the RSAE are negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.