Abstract

We study linear dependence in the case of quotients of analytic functions in several variables (real or complex). We identify the least subcollection of generalized Wronskians whose identical vanishing is sufficient for linear dependence. Our proof admits a straight-forward algebraic generalization and also constitutes an alternative proof of the previously known result that the identical vanishing of the whole collection of generalized Wronskians implies linear dependence. Motivated by the structure of this proof, we introduce a method for calculating the space of linear relations. We conclude with some reflections about this method that may be promising from a computational point of view.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.