Abstract
For a given finite connected graph Γ, a group H of automorphisms of Γ and a finite group A, a natural question can be raised as follows: Find all the connected regular coverings of Γ having A as its covering transformation group, on which each automorphism in H can be lifted. In this paper, we investigate the regular coverings with A= Z p n , an elementary abelian group and get some new matrix-theoretical characterizations for an automorphism of the base graph to be lifted. As one of its applications, we classify all the connected regular covering graphs of the Petersen graph satisfying the following two properties: (1) the covering transformation group is isomorphic to the elementary abelian p-group Z p n , and (2) the group of fibre-preserving automorphisms of a covering graph acts arc-transitively. As a byproduct, some new 2- and 3-arc-transitive graphs are constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.