Abstract

A theory of coupling between electromagnetic and electron Bernstein waves in a plasma slab is presented. The theory uses an approach that associates the linear mode conversion with the singularity of the cold plasma wave equation at the upper hybrid resonance (UHR). The singularity results in linear interaction of cold plasma (electromagnetic) and hot plasma (Bernstein) modes. Applicability of the WKB theory to interacting modes is not required. In this method the full solution of the mode conversion problem including calculation of the excited Bernstein wave complex amplitude is reduced to finding a solution to the cold plasma wave equation, which describes dissipative wave power absorption at the UHR. This method is applicable to a variety of plasma configurations practically without limitations on the inhomogeneity scale-length. It permits one to consider in the framework of a single procedure particular cases like direct tunnelling of the incident wave, O–X–B conversion and transformation of the X-mode launched from the high-field side of a tokamak and having free access to the UHR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call