Abstract

Consider the parametric elliptic problem where is a bounded Lipschitz domain, , , and the diffusion coefficients satisfy the uniform ellipticity assumption and are affinely dependent on . The parameter can be interpreted as either a deterministic or a random variable. A central question to be studied is as follows. Assume that there is a sequence of approximations with a certain error convergence rate in the energy norm of the space for the nonparametric problem at every point . Then under what assumptions does this sequence induce a sequence of approximations with the same error convergence rate for the parametric elliptic problem in the norm of the Bochner spaces ? We have solved this question using linear collective collocation methods, based on Lagrange polynomial interpolation on the parametric domain . Under very mild conditions, we show that these approximation methods give the same error convergence rate as for the nonparametric elliptic problem. In this sense the curse of dimensionality is broken by linear methods. Bibliography: 22 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.