Abstract

Parametric partial dierential equations are commonly used to model physical systems. They also arise when Wiener chaos expansions are used as an alternative to Monte Carlo when solving stochastic elliptic problems. This paper considers a model class of second order, linear, parametric, elliptic PDEs in a bounded domain D with coecients depending on possibly countably many parameters. It shows that the dependence of the solution on the parameters in the diusion coecient is analytically smooth. This analyticity is then exploited to prove that under very weak assumptions on the diusion coecients, the entire family of solutions to such equations can be simultaneously approximated by multivariate polynomials (in the parameters) with coecients taking values in the Hilbert space V = H 1 0(D) of weak solutions of the elliptic problem with a controlled number of terms N. The convergence rate in terms of N does not depend on the number of parameters in V which may be countable, therefore breaking the curse of dimensionality. The discretization of the coecients from a family of continuous, piecewise linear Finite Element functions in D is shown to yield finite dimensional approximations whose convergence rate in terms of the overall number Ndof of degrees of freedom is the minimum of the convergence rates aorded by the best N-term sequence approximations in the parameter space and the rate of Finite Element approximations in D for a single instance of the parametric problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.