Abstract

In a continuation of recent work on Besov regularity of solutions to elliptic PDEs in Lipschitz domains with polyhedral structure, we prove an embedding between weighted Sobolev spaces (Kondratiev spaces) relevant for the regularity theory for such elliptic problems, and TriebelLizorkin spaces, which are known to be closely related to approximation spaces for nonlinear n-term wavelet approximation. Additionally, we also provide necessary conditions for such embeddings. As a further application we discuss the relation of these embedding results with results by Gaspoz and Morin for approximation classes for adaptive Finite element approximation, and subsequently apply these result to parametric problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.