Abstract

A special source of difficulty in the statistical analysis is the possibility that some subjects may not have a complete observation of the response variable. Such incomplete observation of the response variable is called censoring. Censorship can occur for a variety of reasons, including limitations of measurement equipment, design of the experiment, and non-occurrence of the event of interest until the end of the study. In the presence of censoring, the dependence of the response variable on the explanatory variables can be explored through regression analysis. In this paper, we propose to examine the censorship problem in context of the class of asymmetric, i.e., we have proposed a linear regression model with censored responses based on skew scale mixtures of normal distributions. We develop a Monte Carlo EM (MCEM) algorithm to perform maximum likelihood inference of the parameters in the proposed linear censored regression models with skew scale mixtures of normal distributions. The MCEM algorithm has been discussed with an emphasis on the skew-normal, skew Student-t-normal, skew-slash and skew-contaminated normal distributions. To examine the performance of the proposed method, we present some simulation studies and analyze a real dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call