Abstract

AbstractWe study the stability of a thin, Newtonian viscous sheet floating on a bath of denser fluid. We first derive a general set of equations governing the evolution of a nearly flat sheet, accounting for geometrical nonlinearities associated with moderate rotations. We extend two classical models by considering arbitrary external body and surface forces; these two models follow from different scaling assumptions, and are derived in a unified way. The equations capture two modes of deformation, namely viscous bending and stretching, and describe the evolution of thickness, mid-surface and in-plane velocity as functions of two-dimensional coordinates. These general equations are applied to a floating viscous sheet, considering gravity, buoyancy and surface tension. We investigate the stability of the flat configuration when subjected to arbitrary in-plane strain. Two unstable modes can be found in the presence of compression. The first one combines undulations of the centre-surface and modulations of the thickness, with a wavevector perpendicular to the direction of maximum applied compression. The second one is a buckling mode; it is purely undulatory and has a wavevector along the direction of maximum compression. A nonlinear analysis yields the long-time evolution of the undulatory mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call