Abstract

In this study, the changes in the refractive index and intersubband optical absorption coefficients in symmetric double semi-V-shaped quantum wells are investigated theoretically. The energy levels and the envelope wave functions of an electron confined in finite potential double semi-V-shaped quantum wells are calculated within the effective-mass approximation framework. The analytical expressions of the refractive index and intersubband optical absorption coefficients are obtained using the compact density matrix approach. The effects of the incident optical intensity and structure parameters, such as the barrier width, confinement potential and the well width, on the optical properties of the double semi-V-shaped quantum wells are investigated. The numerical results show that both the incident optical intensity and structure paremeters have a great effect on the optical characteristics of these structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.