Abstract

The subharmonic resonances of an axially moving graphene-reinforced laminated composite plate are studied based on the Galerkin and multiscale methods. Graphene nanoplatelets (GPLs) are added into matrix material which acts as the basic layer of the plate, and a graphene-reinforced nanocomposite plate is thus obtained. Different GPL distribution patterns in the laminated plate are considered. The Halpin–Tsai model is selected to predict the physical properties of the nanocomposite. Hamilton’s principle is utilized to conduct the dynamic modeling of the plate and the von Kármán deformation theory is used. The velocity is assumed to be a combination of constant and harmonically varied velocities. The natural frequencies of the linear system with constant velocity can be obtained using the eigenvalues of the coefficient matrix of the ordinary differential equations after the governing partial differential equations of motion are discretized through the Galerkin method. The instability regions of the linear system and the amplitude–frequency relations of the nonlinear system considering the harmonically varied velocity are obtained based on the multiscale analysis. The effect of GPL reinforcement on the subharmonic resonances of the linear and nonlinear systems is analyzed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call