Abstract
Linear algebra is an essential tool in many branches of mathematics and has wide applications. A large part of the subject consists of the study of homomorphisms of (finitely generated) free modules (in particular, linear transformations of finite dimensional vector spaces). There is a crucial relationship between such homomorphisms and matrices (Section 1). The investigation of the connection between two matrices that represent the same homomorphism (relative to different bases) leads to the concepts of equivalence and similarity of matrices (Sections 2 and 4). Certain important invariants of matrices under similarity are considered in Section 5. Determinants of matrices (Section 3) are quite useful at several points in the discussion.KeywordsLinear TransformationCommutative RingDivision RingMinimal PolynomialInvariant FactorThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.