Abstract

Based on the line-space quantum formalism, the potential of Resonant Four-Wave Mixing spectroscopy as a new tool to study rotational and translational anisotropy of photofragments produced by absorption of plane-polarized photons is theoretically addressed. Synergy of the flexible polarization setup, fine quantum state resolution and of the possibility to study translational recoil distributions, makes the tool unsurpassed among the all-optical means to interrogate the photofragment states. It allows to directly separate signals induced by the rotational anisotropy which remain silent in the most of laser-induced fluorescence responses and thus opens new ways to study rotational helicity, a crucial signature of the photolysis pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.