Abstract

The effect of laser line shape and bandwidth on the signal detected in two-color, resonant four-wave mixing (TC-RFWM) spectroscopy is determined by means of an ab initio calculation of the third-order polarization based on diagrammatic perturbation theory. Modifications to the approach previously used for the case of δ-function laser line shapes are made by introducing a different treatment of the rotating wave approximation and phase-matching conditions. A three-level excitation scheme for double-resonance spectroscopy of bound and quasibound states is analyzed. In the case of Lorentzian laser line shapes, analytic expressions for the signal line profile are obtained for each excitation scheme. Analytic approximations of the signal line profile are also obtained in the case of Gaussian laser line shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.