Abstract
BackgroundRadioresistance is the main reason for the failure of radiotherapy in non-small-cell lung cancer (NSCLC); however, the molecular mechanism of radioresistance is still unclear.MethodsAn RNA-Seq assay was used to screen differentially expressed long non-coding RNAs (lncRNAs) and genes in irradiation-resistant NSCLC cells. RT-PCR and Western blotting assays were performed to analyze the expressions of lncRNAs and genes. The chromosome conformation capture (3C) assay was performed to measure chromatin interactions. Cell cytotoxicity, cell apoptosis, sphere formation and Transwell assays were performed to assess cellular function.ResultsIn this study, it was found that LINC01224 increased during the induction of radioresistance in NSCLC cells. LINC01224 was located within the enhancer of ZNF91, and LINC01224 could affect the transcription of ZNF91 by regulating the long-range interactions between the ZNF91 enhancer and promoter. Moreover, upregulation of LINC01224 and ZNF91 could promote irradiation resistance by regulating the stem cell-like properties of NSCLC cells. In addition, high expression levels of LINC01224 and ZNF91 in tissue samples were associated with radioresistance in NSCLC patients.ConclusionOur findings demonstrated that LINC01224/ZNF91 drove radioresistance regulation by promoting the stem cell-like properties in NSCLC.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.