Abstract

Recently, radioresistant cancer cells surviving radiotherapy have been suggested to show more aggressive phenotypes than parental cells, and the underlying mechanisms may be associated with cancer stem cells. This study provided novel mechanistic insights for E3 ubiquitin ligase CHIP in stem cell properties and radioresistance of non-small cell lung cancer (NSCLC). After bioinformatic prediction for key genes involved, NSCLC tissues and cells were collected to measure the expression of CHIP and PBK. E3 ubiquitin ligase CHIP was poorly expressed, while PBK was highly expressed in NSCLC tissues and cells. CHIP reduced the protein stability of PBK through the ubiquitin-protease pathway to repress the activation of ERK pathway. Based on the gain- or loss-of-function experiments, it was noted that restoration of CHIP curtailed stem cell properties and radioresistance in NSCLC, as manifested by inhibited sphere formation and cell proliferation, decreased number of CD133+CD44+ cells and expression of OCT4, SOX2, and NANOG, as well as facilitated apoptosis of NSCLC cells. Besides, in vivo animal experiments further confirmed that CHIP restrained tumorigenic ability and improved radiosensitivity of NSCLC cells by inhibiting PBK/ERK axis. Collectively, CHIP suppressed stem cell properties and radioresistance of NSCLC cells by inhibiting PBK/ERK axis, therefore offering a potential therapeutic target for enhancing efficacy of radiotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.