Abstract

BackgroundLong noncoding RNAs (lncRNAs) have been found to promote tumor progression. However, the role of lncRNAs in pancreatic ductal adenocarcinoma (PDAC) requires more investigation.MethodsIn this study, microarray was used to measure lncRNA levels in 3 pairs of PDAC tissues. As the highest upregulated lncRNA, LINC00483 was selected for further investigation to determine its functions in PDAC. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to confirm LINC00483 level in PDAC. PDAC cell lines were transfected with short hairpin RNA (shRNA) or microRNA (miRNA). 5-ethynyl-2’-deoxyuridine (EdU) assay, colony formation assay, wound healing assay, transwell assay, and xenograft mouse models were used to evaluate LINC00483 inhibition in vitro and in vivo. Luciferase reporter assay was performed to confirm binding sites of LINC00483 with miR-19a-3p, and miR-19a-3p with TANK-binding kinase 1 (TBK1). Immunohistochemistry (IHC) was performed to evaluate TBK1 and c-myc expression in PDAC tissues. Western blot was used to elucidate the LINC00483/miR-19a-3p/TBK1/mitogen-activated protein kinase (MAPK) axis.ResultsOur data showed that LINC00483 was significantly upregulated in PDAC compared to normal tissue. High level of LINC00483 was correlated with advanced clinical stage, tumor invasion and metastasis, and adverse prognosis in PDAC patients. LINC00483 suppression inhibited proliferation and invasion in vitro and tumor development in vivo via modulation of miR-19a-3p expression. Subsequently, we found that miR-19a-3p binds to TBK1 in PDAC and LINC00483 could regulate PDAC cell progression by regulating miR-19a-3p via the TBK1/MAPK pathway.ConclusionsThe results of our study suggested that the LINC00483/miR-19a-3p/TBK1/MAPK axis contributed to PDAC progression, which provides a potential therapeutic target for PDAC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call