Abstract
Great effort has been devoted to developing single-phase magnetoelectric multiferroics, but room-temperature coexistence of large electric polarization and magnetic ordering still remains elusive. Our recent finding shows that such polar magnets can be synthesized in small-tolerance-factor perovskites AFeO3 with unusually small cations at the A-sites, which are regarded as having a LiNbO3-type structure (space group R3c). Herein, we experimentally reinforce this finding by preparing a novel room-temperature polar magnet, LiNbO3-type InFeO3. This compound is obtained as a metastable quench product from an orthorhombic perovskite phase stabilized at 15 GPa and an elevated temperature. The structure analyses reveal that the polar structure is characterized by displacements of In3+ (d10) and Fe3+ (d5) ions along the hexagonal c-axis (pseudocubic [111] axis) from their centrosymmetric positions, in contrast to well-known perovskite ferroelectrics (e.g., BaTiO3, PbTiO3, and BiFeO3) where d0 transition-metal ion...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.