Abstract

The structural, electronic, magnetic and ferroelectric properties of Pb free double perovskite multiferroic Bi2FeTiO6 are investigated using density functional theory within the general gradient approximation (GGA) method. Our structural optimization using total energy calculations for different potential structures show a minimum energy for a non-centrosymmetric rhombohedral structure with R3c space group. Bi2FeTiO6 is found to be an antiferromagnetic insulator with C-type magnetic ordering with bandgap value of 0.3 eV. The calculated magnetic moment of 3.52 μB at Fe site shows the high spin arrangement of 3d electrons which is also confirmed by our orbital projected density of states analysis. We have analyzed the characteristics of bonding present between the constituents of Bi2FeTiO6 with the help of calculated partial density of states and Born effective charges. The ground state of the nearest centrosymmetric structure is found to be a G-type antiferromagnet with half metallicity showing that by the application of external electric field we can not only get a polarized state but also change the magnetic ordering and electronic structure in the present compound indicating strong magnetoelectric coupling. The cation sites the coexistence of Bi 6s lone pair (bring disproportionate charge distribution) and Ti4+ d0 ions which brings covalency produces off-center displacement and favors a non-centrosymmetric ground state and thus ferroelectricity. Our Berry phase calculation gives a polarization of 48 µCcm-2 for Bi2FeTiO6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call