Abstract

Information in conventional digital computing platforms is encoded in the steady states of transistors and processed in a quasi-static way. Memristors are a class of emerging devices that naturally embody dynamics through their internal electrophyiscal processes, enabling nonconventional computing paradigms with enhanced capability and energy efficiency, such as reservoir computing. Here, we report on a dynamic memristor based on LiNbO3. The device has nonlinear I-V characteristics and exhibits short-term memory, suitable for application in reservoir computing. By time multiplexing, a single device can serve as a reservoir with rich dynamics which used to require a large number of interconnected nodes. The collective states of five memristors after the application of trains of pulses to the respective memristors are unique for each combination of pulse patterns, which is suitable for sequence data classification, as demonstrated in a 5 × 4 digit image recognition task. This work broadens the spectrum of memristive materials for neuromorphic computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.