Abstract

Biomineralization technology is a feasible and promising route to fabricate phosphate cathode materials with hierarchical nanostructure for high-performance lithium-ion batteries (LIBs). In this work, to improve the electrochemical performance of LiMn0.8Fe0.2PO4 (LMFP), hierarchical LMFP/carbon nanospheres are wrapped in situ with N-doped graphene nanoribbons (GNRs) via biomineralization by using yeast cells as the nucleating agent, self-assembly template, and carbon source. Such LMFP nanospheres are assembled by more fine nanocrystals with an average size of 18.3 nm. Moreover, the preferential crystal orientation along the [010] direction and certain antisite lattice defects can be identified in LMFP nanocrystals, which promote rapid diffusion of Li ions and generate more active sites for the electrochemical reaction. Moreover, such N-doped GNR networks, wrapped between LMFP/carbon nanospheres, are beneficial to the fast mobility of electrons and good penetration of the electrolyte. As expected, the as-prepared LMFP/carbon multicomposite presents the outstanding electrochemical performance, including the large initial discharge capacity of 168.8 mA h g-1, good rate capability, and excellent long-term cycling stability over 2000 cycles. Therefore, the biomineralization method is demonstrated here to be effective to manipulate the microstructure of multicomponent phosphate cathode materials based on the requirement of capacity, rate capability, and cycle stability for LIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.