Abstract
A quantum network consists of independent sources distributing entangled states to distant nodes which can then perform entangled measurements, thus establishing correlations across the entire network. But how strong can these correlations be? Here we address this question, by deriving bounds on possible quantum correlations in a given network. These bounds are nonlinear inequalities that depend only on the topology of the network. We discuss in detail the notably challenging case of the triangle network. Moreover, we conjecture that our bounds hold in general no-signaling theories. In particular, we prove that our inequalities for the triangle network hold when the sources are arbitrary no-signaling boxes which can be wired together. Finally, we discuss an application of our results for the device-independent characterization of the topology of a quantum network.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have