Abstract

AbstractWe prove several general conditional convergence results on ergodic averages for horocycle and geodesic subgroups of any continuous $\operatorname {SL}(2, \mathbb {R})$ -action on a locally compact space. These results are motivated by theorems of Eskin, Mirzakhani and Mohammadi on the $\operatorname {SL}(2, \mathbb {R})$ -action on the moduli space of Abelian differentials. By our argument we can derive from these theorems an improved version of the ‘weak convergence’ of push-forwards of horocycle measures under the geodesic flow and a short proof of weaker versions of theorems of Chaika and Eskin on Birkhoff genericity and Oseledets regularity in almost all directions for the Teichmüller geodesic flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.