Abstract
AbstractInterval exchange maps are related to geodesic flows on translation surfaces; they correspond to the first return maps of the vertical flow on a transverse segment. The Rauzy–Veech induction on the space of interval exchange maps provides a powerful tool to analyze the Teichmüller geodesic flow on the moduli space of Abelian differentials. Several major results have been proved using this renormalization. Danthony and Nogueira introduced in 1988 a natural generalization of interval exchange transformations, namely linear involutions. These maps are related to general measured foliations on surfaces (whether orientable or not). In this paper we are interested by such maps related to geodesic flow on (orientable) flat surfaces with ℤ/2ℤ linear holonomy. We relate geometry and dynamics of such maps to the combinatorics of generalized permutations. We study an analogue of the Rauzy–Veech induction and give an efficient combinatorial characterization of its attractors. We establish a natural bijection between the extended Rauzy classes of generalized permutations and connected components of the strata of meromorphic quadratic differentials with at most simple poles, which allows us, in particular, to classify the connected components of all exceptional strata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.