Abstract
In large antenna arrays, the possibility of occurrence of faults in some of the radiating elements cannot be precluded at all times. In such situations, the radiation pattern of the array gets distorted, mostly with an increase in sidelobe level and decrease in gain. Although it is not possible to restore the pattern fully by rearranging the excitations of the functioning elements, compensation methods have been reported in the literature for restoring one performance parameter of the array and making a trade-off on some other parameter. In this article, we have made a study on the tolerance level of this compensation process. One part of the study deals with the thinning in the failed array, that is, to find a limit on the minimum number of functioning elements of the array that can restore the digital beamforming of the failed array. The second part of study deals with finding the maximum number of element failures that can be compensated. The study was carried out by optimizing the amplitude excitations of the failed array. Instead of classical optimization techniques, particle swarm optimization was used for the compensation process. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:635-645, 2014.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of RF and Microwave Computer-Aided Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.