Abstract
We consider the problem of asymptotic analysis of the zeros of a sampled system of a linear time-invariant continuous system as the sampling period decreases. We show that for a continuous prototype system with delay the limits of a part of the model's zeros are roots of certain polynomials whose coefficients are determined by the relative order of the prototype system and delay. In the special case of zero delay these polynomials coincide with Euler polynomials. Zeros of these generalized Euler polynomials are localized: we show that they are all simple and negative, and that they move monotonically between the zeros of classical Euler polynomials as the fractional part of the delay divided by the sampling period grows. Our results lead to sufficient and "almost necessary" conditions for the stable invertible of the discrete model for all sufficiently small values of the sampling period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.