Abstract

The Savage-Hutter theory for granular avalanches assumes that the granular material is in either of two limiting stress states, depending on whether the motion is convergent or divergent. At transitions between convergent and divergent regions, a jump in stress occurs, which necessarily implies that there is a jump in the avalanche velocity and/or its thickness. In this paper, a regularizaron scheme is used, which smoothly switches from one stress state to the other, and avoids the generation of such singular surfaces. The resulting algorithm is more stable than previous numerical methods but shocks can still occur during rapid convergence in the run-out zone. Results are presented from two-dimensional calculations on complex geometry which illustrate that some necking features observed in laboratory experiments can be explained by the regularized Savage-Hutter model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.