Abstract

intracellular Na+ accumulation during ischemia and reperfusion leads to cytosolic Ca2+ overload through reverse-mode operation of the sarcolemmal Na+ -Ca2+ exchanger. Cytosolic Ca2+ accumulation promotes mitochondrial Ca2+ (Ca2+ m) overload, leading to mitochondrial injury. We investigated whether limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation (VF) attenuates Ca2+ m overload and lessens myocardial dysfunction in a rat model of VF and closed-chest resuscitation. hearts were harvested from 10 groups of 6 rats each representing baseline, 15 min of untreated VF, 15 min of VF with chest compression given for the last 5 min (VF/CC), and 60 min postresuscitation (PR). VF/CC and PR included four groups each randomized to receive before starting chest compression the new NHE-1 inhibitor AVE4454B (1.0 mg/kg), the Na+ channel blocker lidocaine (5.0 mg/kg), their combination, or vehicle control. The left ventricle was processed for intracellular Na+ and Ca2+ m measurements. limiting sarcolemmal Na+ entry attenuated cytosolic Na+ increase during VF/CC and the PR phase and prevented Ca2+ m overload yielding levels that corresponded to 77% and 71% of control hearts at VF/CC and PR, without differences among specific Na+ -limiting interventions. Limiting sarcolemmal Na+ entry attenuated reductions in left ventricular compliance during VF and prompted higher mean aortic pressure (110 +/- 7 vs. 95 +/- 11 mmHg, P < 0.001) and higher cardiac work index (159 +/- 34 vs. 126 +/- 29 g x m x min(-1) x kg(-1), P < 0.05) with lesser increases in circulating cardiac troponin I at 60 min PR. Na+ -limiting interventions prevented excess Ca2+ m accumulation induced by ischemia and reperfusion and ameliorated myocardial injury and dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.