Abstract

The implementation of a “superjunction” collector design in a silicon–germanium heterojunction bipolar transistor technology is explored for enhancing breakdown performance. The superjunction collector is formed via the placement of a series of alternating the p/xn-doped layers in the collector-base space charge region and is used to reduce avalanche generation leading to breakdown. An overview of the physics underlying superjunction collector operation is presented, together with TCAD simulations, and a parameterization methodology is developed to explore the limits of the superjunction collector performance. Measured data demonstrate the limitations explored in simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.