Abstract

We present a novel collector design for silicon-germanium heterojunction bipolar transistors (SiGe HBTs). The design improves the well-known speed / breakdown voltage trade-off in SiGe HBTs for radio-frequency (RF) and millimeter-wave applications. Applying multiple alternating p and n-type layers (a superjunction) deep in the collector-base (CB) space charge region (SCR) alters the electric field and electron temperature in the CB junction. Consequently impact ionization is suppressed while the width of CB SCR is not increased, and therefore, the breakdown voltages (BV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">CEO</sub> and BV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">CBO</sub> ) are increased with no degradation in the device speed and RF or mm-wave performance. For a fixed ac performance, the BV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">CEO</sub> is improved by 0.33 V, producing a SiGe HBT with f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> = 101 GHz, f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> = 351 GHz, and BV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">CEO</sub> = 3.0 V in DESSIS TCAD simulations. The proposed structure is also contrasted with other approaches in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call