Abstract

The aim of this work was the development of an explicit model to estimate the limiting current density in the electrodialysis of dilute multi-ionic solutions. The model assumes that the ionic transport occurs in a film layer adjacent to an ion exchange membrane and it is quantified by a linearized form of the Nernst–Planck (NP) equations together with the electroneutrality requirement at the solution/ion exchange membrane interface. An explicit expression for the limiting current density of a dilute multi-ionic solution was derived, involving a mass-transfer coefficient based on an effective diffusivity of the multi-ionic solution. The model further assumes that the steric exclusion of the ions by the membrane is negligible, and thereby the limiting current density is attained when the concentration of each and every ion is null at the solution/membrane interface. The model predictions for the limiting current density were compared with experimental data of single salt solutions (MgCl 2) and multi-ionic solutions (MgSO 4 + MgCl 2) in a bench-scale electrodialysis unit (EUR2C-7P18, Eurodia, France) for various Reynolds numbers and salts concentrations. The average relative deviations between the model predictions and the experimental data were lower than 13% for MgCl 2 solutions (10, 20 equiv./m 3) and solutions of MgSO 4 + MgCl 2 (5 + 5, 10 + 10 equiv./m 3). The dimensionless limiting current density and the counterions transport numbers predicted by the linearized and non-linear Nernst–Planck equations were also compared for a broad range of dimensionless operating parameters and a fair to good agreement was observed between the two approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.